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The motion of the head of a gravity current travelling down a slope of angle 8 to the 
horizontal is investigated in the laboratory. The head is produced by suddenly ini- 
tiating a buoyancy flux from a line source a t  the top of the slope. It is found that for 
very small slopes (0 < 0.5") the head decelerates with distance from the source, but a t  
greater slopes the buoyancy force is large enough to overcome frictional effects and a 
steady head velocity results. Over a wide range of slope angles the front velocity U,, 
non-dimensionalized by the cube root of the buoyancy flux (gAQ)+, is almost inde- 
pendent of the slope angle and U,/(gA Q)+ = 1.5 f 0.2 for 51 < 8 < 90". This result is 
shown to follow from some simple analysis which relates the velocity of the front to the 
following flow. For a Boussinesq plume the front velocity is found to be approximately 
60 yo of the mean velocity of the following flow. This means that the head increases in 
size as i t  travels down the slope, both by direct entrainment into the head itself and by 
addition of fluid from the following flow. We find that direct entrainment increases 
with increasing slope and accounts for one-tenth of the growth of the head a t  10" and 
about two-thirds a t  90". 

1. Introduction 
There are many practical situations in which dense fluid is suddenly released into a 

less dense environment. This dense fluid will spread under the influence of forces pro- 
duced by its own buoyancy and motions of this form are often referred to as gravity 
currents. They are characterized by the distinctive nature of the front, which consists of 
a raised head leading a shallower flow behind. 

Sea-breeze fronts and thunderstorm outflows are examples of naturally occurring 
atmospheric gravity currents. Man-made gravity currents can be produced by sudden 
release of heavy vapour into the atmosphere, which may occur by design or owing to 
an industrial accident. They are also found in the ocean where water masses of differ- 
ent density come into contact. A related class of flows are produced when the density 
difference is caused by suspended particulate matter. These are usually called turbidity 
currents. The movement of snow in an avalanche and the motion of sediment in a 
reservoir often occurs in the form of a turbidity current. These flows are more compli- 
cated than gravity currents as the suspended material is both picked up and deposited 
as the current moves along, but they have many qualitative features in common. 

Gravity currents have been studied over a number of years and i t  has been realized 
that when the current flows along a horizontal boundary the head is a controlling 
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feature of the flow. The dynamics of the head have been investigated in two recent 
papers (Britter & Simpson 1978; Simpson & Britter 1979) in which it is shown how the 
mixing, which occurs immediately behind the head, determines the rate of advance of 
the current. 

In most previous studies of gravity currents, the current has been considered to be 
flowing along a horizontal boundary. However, this is often not the case in practical 
situations. The terrain over which atmospheric currents move is not flat, and ava- 
lanches are essentially associated with motions from one height to another. 

The motion of a gravity current flowing down a slope has received relatively little 
attention. A number of authors (Georgeson 1942; Wood 1965; Middleton 1966; Tsang 
& Wood 1968; Tochon-Dangay 1977; Hopfinger & Tochon-Dangay 1977) have re- 
ported experimental data for these flows, but, in general, the information covers only 
restricted parts of the parameter range. In  this paper, we discuss gravity currents over 
the whole range of slopes 0" < 8 < 90". Apart from the direct relevance to the practical 
situations described above, this study provides a link between the horizontal gravity 
current (0 = 0") and a vertical starting plume (8 = 90"). We find that in many ways the 
horizontal or near-horizontal gravity current is a special case as the velocity of the 
front is not steady. At angles greater than some critical angle (Oc), which typically is 
less than a degree, the velocity is steady. We find, too, that the mixing at  the front 
increases dramatically with slope, implying that dilution of the fluid in thecurhent will 
be considerably greater when it flows down a gradient rather than along the flat. 

We begin our examination of these flows by a description of some laboratory experi- 
ments and some dimensional arguments designed to isolate the relevant parameter 
groups. In 0 3 we present the experimental results and in 3 4 discuss the dynamics of the 
motion. By relating the motion of the front to that of the following flow, we derive an 
expression for the front velocity which is valid for 5' < 0 < 90" and which compares 
verywell with our experimental observations, and with those of the authors cited above. 

2. The experiments 
The experiments were carried out in a tank containing fresh water, in which the 

gravity current was produced by introducing dense brine from a line source at one end. 
The tank, made of Perspex, was 15 cm wide, 240 cm long and 60 cm deep. It was 
pivoted about a transverse axis under the middle of the base, and could be set at any 
angle in the range 0" < 0 < 90'. 

For each experiment the tank was filled with tap water and then set a t  the desired 
angle to the horizontal. Salt solution was suddenly introduced across the width of the 
tank at  the top of the slope and allowed to run down it under gravity. As we are only 
concerned here with the flow in the vicinity of the front of the current, once it reached 
the far end of the tank the supply of salt water was turned off, and the tank emptied. 
The brine was pumped from a reservoir tank and the flow rate measured using a 
flow meter. Using this information, we calculated the volume flux per unit width Q 
entering the tank. The density of the brine in the reservoir was measured using a 
hydrometer accurate to 0.0005 g ml-1. 

The flow was visualized using a shadowgraph, and measurements were taken either 
directly from that or from still photographs. We measured the speed of advance of the 
front of the current and also its shape and size in this way. 
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FIGURE 1. Definition sketch of a gravity current on a slops. 

The independent variables for this flow are Q the volume flow rate per unit width, 
p1 the density of the fresh water, p z  the density of the brine, 8 the angle of the slope and 
v the kinematic viscosity of the fluid. 

The motion of a dense current on a slope has been studiedjby Ellison & Turner (1 959). 
They were interested in the flow well behind the head, and examined the properties 
of this steady flow. We, on the other hand, are concerned primarily with the motion of 
the front and its relation to the following current. 

For the continuous current well behind the head Ellison & Turner showed that the 
mean velocity down the slope was independent of the downstream distance from the 
source. The thickness of the current, however, increased downstream a t  a constant 
rate owing to entrainment of the ambient fluid, and the density excess decreased, 
maintaining a constant buoyancy flux down the slope. As the front of the current is 
intimately connected to the following flow, we will begin by examining the possibility 
that the velocity of the front is likewise constant as it travels down the slope. 

We observe in these experiments that for all slopes the front of the current has a 
distinctive raised ‘head ’ structure. Such heads are well known for horizontal gravity 
currents and have been observed as ‘caps’ on the front of vertical starting plumes 
(Turner 1962). Dimensional analysis shows that if the velocity of advance is constant 
the properties of the head are related to the flow variables as follows (see figure 1) .  

(2.1) 
Velocity of advance: v, = (9; Q)*fl(@ Re). 

(2.2) 
d H  
- = fz(8,Re). d x  

Height: 

Length: dL - =f3(8, Re). 
ax  

Average negative buoyancy of the head: 

* = (g; Q)#x-2f4(8, Re). (2.4) dx 

Here gi = 2(pz - p l ) / ( p z  + p l )  and Re = (g; &)*H/v is a Reynolds number of the flow. 
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The velocity V,  was measured by timing the front of the current between two points 
and d H l d x  by marking the point of the head furthest from the slope as the head 
travelled down the slope and then fitting a line by eye through the points. The ratio 
L / H  was obtained from photographs. The buoyancy excess g& was not measured but 
is written here for completeness. 

We restrict our attention to flows in which the Reynolds number is large enough so 
that the functions fi (i = 1, . . . , 4 )  are only functions of the slope angle 0. This places 
some limitations on our experimental observations, and these will be considered 
in $4. 

Before discussing the experimental results we note one further limitation on these 
experiments. At large slopes the head became very large and in a number of cases 
expanded to fill the whole depth of the tank. Under these circumstances; the effect of 
the far boundary cannot be neglected and so we have restricted all our data to the case 
where the head height H was less than one half the tank depth. 

3. The experimental results 

Figure 2 (plates 1 and 2) shows shadowgraph images of the front of th current for 

are many similarities in the structure a t  all angles. The front is characterized by a 
raised head and is followed by a shallower steady current. The foremost part of the 
front is usually away from the boundary, although at the steeper slopes this position 
may fluctuate considerably as the front travels down the slope. 

There is evidence of considerable mixing and entrainment of the ambient fluid. As 
the slope increases the heads become larger (at the same downstream position). This is 
due to two effects. The head entrains fluid by mixing and is also supplied from the 
rear by the steady current. At larger slopes there is more mixing both into the head 
itself and into the steady current behind. These processes lead to an increase in the 
dimensions of the head with distance down the slope except when the current is 
horizontal. For the horizontal current there is virtually no mixing in the flow behind 
and any mixed fluid produced a t  the head itself is left behind as the current moves 
forward (Britter & Simpson 1978). 

( a )  Qualitative observations 

0 = 0, 5", 20", 45", 90". The fronts are travelling from right to left. We n 1 te that there 

(b) Quantitative results 
We begin by checking the presumption made in $ 2  that the velocity of the front is 
constant in time (or with distance from the source). Figure 3 shows the position of the 
front x', measured from the source, plotted against time t appropriately scaled. 
These data were obtained from frame-by-frame examination of a cind film of the 
flows. Figure 3 covers the range lo < 0 < 15' and we see that over this distance the 
fronts travel with constant velocity. This result is to be contrasted with the horizontal 
gravity currents shown on figure 4, where a reduction in velocity with distance is 
observed. These two figures highlight a fundamental difference between a gravity 
current flowing down a slope and one travelhg along a horizontal boundary. In the 
former case there is gravitational force down the slope which can balance frictional and 
entrainment drag, thereby producing a steady front velocity. For the horizontal 
current, on the other hand, this balance cannot be struck and so it will always slow 
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FIGURE 3. The displacement of the gravity current head aa a function of time. 0,  6 = lo, 
96 Q = 41 cmSr8; 0 , O  = 5 O , g ;  Q = 41 cma s"; B, 6 = 5 O ,  g; Q = 202 cm3 s a ;  A. 6 = loo, 
g; Q = 192 cms a"; v, O = 15O, g; Q = 180 cm8 s a .  

0 0.5 1 .o 1.5 2.0 

tkb Q)* (m) 
FIGURE 4. The displacement of the gravity current head, aa a function of time, on a horizontal 

slope showing the decreasing front velocity. 0,  gi Q = 41 cm3 s"; 0, g; Q = 186 oms sd. 
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FIGURE 5. The front velocity, U,, non-dimensionalized with (96 Q$ as a function of position. q, 
6 = 30°, g; Q = 165 em8 s - ~ ;  0, 8 = 30°, g; Q = 160 cm3 r9. 

down. The deceleration is most pronounced in the current with the lower buoyancy 
flux as is seen on figure 4. The transition from steady to unsteady currents occurs at an 
angle 8, which depends on the drag. We will discuss this point more fully in the next 
section. 

The constancy of the velocity is also observed a t  higher angles. We show one case of 
the front velocity Ufat  8 = 30" for a number of distances downstream x' on figure 5 .  
We note that U,(gi &)a = 1.5 f 0.2; there appears to be no trend with downstream 
distance. 

On figure 6 we plot the velocity of the front U, against the buoyancy flux gi Q for 
flows a t  four different angles. The solid lines each have a slope of 9, and we see that the 
data conform reasonably well with this slope. Thus it appears as though V,cc (gh Q)*, as 
expected from (2. l ) ,  There is considerable scatter on both this and the previous figure. 
This scatter results from the fact that the foremost edge of the current, which was 
measured to determine the velocities, has a highly variable character. Different parts 
of the current catch up with the front and overtake it as it moves down the slope. 

We are now in a position to determine the dependence of the velocity on the slope. 
This is shown on figure 7, where lJ,(gi &)-$ is plotted against 6. We have excluded cur- 
rents for which either the front was unsteady or for those in which we thought that the 
Reynolds number was an important parameter. This accounts for the lack of data below 
8 = 5". We have also included data obtained by other workers, one of which (Georgeson 
1942) is an average of 107 experiments a t  much higher Reynolds numbers than ours. 
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FIGURE 6. The front velocity as a function of the buoyancy flux g6 Q for 8 = 5' (o), 8 = 10' 
(.), 0, = 45' (0) and 0 = 90" (m). The lines have a slope of + &. 

The remarkable feature of these results is the relatively small variation of front 
velocity with 0. This is because of the fact that although the gravitational force in- 
creases as the slope becomes more vertical there is also increased entrainment, both 
into the head'itself and into the flow behind. This produces an increased retarding 
force on the current as momentum is imparted to the entrained fluid. 

The effect of entrainment is seen in the measurements in the growth of the height 
of the head with distance down the slope. These are shown on figure 8. Also shown on 
this figure is the growth of the following flow, dh/dx, taken from Ellison & Turner 
(1959). The aspect ratio of the head H / L  increases with slope (figure 9) to about $ at 
0 = go", corresponding to a near-cylindrical head. 
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FIGURE 7. The non-dimensional front velocity, Uf/(g6 Q)#, plotted against the slope:*, George- 
son (1942); 0, Wood (1965); ., Tsang & Wood (1968); 0, Tochon-Dangay (1977); @, present 
study. The solid line is equation (4.4) with CD = 3 x 10-8 and the dashed line is with CD = 10 x 
10-8. 

4. Analysis 
The agreement between the experimental results and the dimensional analysis 

presented in 5 2 indicates that the motion of the front of the current is determined by 
the properties of the (steady) following flow. We will show that it is possible to match 
the front onto the following flow and thereby determine the unknown functions 
fi, . . . , f4 which arise in the dimensional analysis (2.1)-(2.4). 

The flow of an inclined plume, which is the flow immediately behind the head region, 
has been studied by Ellison & Turner (1959). They found that the mean velocity U is 
independent of the downstream distance 2, and that the width of the plume h increases 
linearly with x as a result of the entrainment of ambient fluid. Here the mean velocity 
U ,  width h and mean negative buoyancy of the plume are defined by 

W 

Uh = f udz, 
J o  
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6 (ded 
FIGURE 8. The rate of growth of the head height, dH/dx,  as a function of slope. Also shown is the 
range of observations of the growth of the depth of the following plume, dhldx, from Ellison & 
Turner (1959). W, Tsang & Wood (1968); 0 ,  present study. 

and 

where z is directed across the plume. 
As we have observed Ellison & Turner found that the rate of entrainment E 

increased with increasing slope, and under the usual boundary-layer assumptions for a 
Boussinesq fluid showed that 

dh S,  Ri, tan 0 - C, 
ax l+gS,Ri, . 

E E - =  

Here C, is the drag coefficient due to stress at  the lower boundary and 

is a ‘normal’ Richardson number to which the flow rapidly adjusts. 8, and S, are 
profile constants defined by integrating across the plume (see equations (9) and (10) of 
Ellison & Turner): typically, 0.10 < S ,  < 0.15 and 0.6 < S,  < 0.9. 

As, typically, C, < 0.02 we see immediately from (4.1) that the behaviour of the 
inclined plume is independent of the wall stress a t  large slopes. This is because the 
retarding force on the plume now comes primarily from the entrainment across the 

~ i ,  = (g’hcose/u2), 
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FIGURE 9. The aspect ratio of height to length of the head of a gravity currenl plotted &B a 
function of slope. 0, Wood (1965); m, Hopfinger & Tochon-Dangay (1977): 0 ,  present study. 

outer edge. At small slopes, on the other hand, the two terms in the numerator of (4.1) 
become comparable in size and the bottom stress is no longer negligible. 

Except at  these very small slopes (< 0-5"), we have observed that the velocity of 
the front U, is steady and proportional to (gi Q)*. The same is true for the mean velocity 
of the following flow. This suggests that there is a relationship between U, and U ,  
which we will determine by use of an argument similar to that proposed (incorrectly; 
seeTurner 1973, p. 73) by Prandtl(1952) for agravity current on a horizontal boundary. 
We consider a streamline near the lower boundary which, in a frame of reference 
moving with the head velocity, stagnates at the front. The velocity of fluid on this 
streamline in the following current is denoted by V,. If the energy loss along this 
streamline is equal to the change in potential energy due to the gravitational force 
along the streamline, then equality of the static pressures either side of the front 
a t  the stagnation point leads to 

p1 U; = p(U,  - U,)2 + 2g(p -PI) Sz h cos 8. (44 

u; = (v, - q ) 2  + 2g's2 h 8. (4.3) 

In  the Boussinesq limit p1 N p, and thus 

Using the fact that &3, Ri, < 1, (4.1), (4.3) and conservation of buoyancy flux in the 
plume leads to the result that 

(4.4) 
uf =++ asin8 ) ( sin8 )-+ 

In  the derivation of (4.4) we have related U, to the mean velocity of the following flow 
by writing Us = aU. It seems likely that the streamline with the maximum velocity 

(96 &Ia a 2(E+CD) E + C D  
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will be the one which stagnates at  the front of the head, the others with smaller velo- 
cities being deflected backwards before reaching the foremost point. Assuming that this 
is the case, direct measurements of the mean and maximum velocity of the following 
flow by Ellison & Turner (1959) give a = 1.45-1.65 depending on the slope, whilst a 
Gaussian velocity profile gives a = J2. On the other hand, if U, is identified with the 
mean velocity a = 1. We shall compromise and take a = * ( 1 +  J2) = 1.2. The front 
velocity given by (4.4) varies by 15 yo, which is within the scatter of our data, due to 
these uncertainties in the value of a. 

Taking typical values of E = 10-38 and 8, = 0.75 from Ellison & Turner (1959), 
the front velocity predicted by (4.4) is shown in figure 7. Two curves are shown corres- 
ponding to different values of the drag coefficient C,. We see that at  high slopes the 
effect of changing the drag coefficient is negligible as most of the retardation of the 
current is produced by entrainment. At small slopes, however, the effect of bottom 
drag is noticeable. The drag coefficient C, is probably a function of the precise stratifi- 
cation in the current (Ellison & Turner 1959), which is, in turn, determined by the 
entrainment rate E .  Similarly, turbulence generated at the lower boundary produces 
entrainment into the current, and so there is an interdependence between E and C,. 
However, these effects are not likely to be important at large slopes, as some pre- 
liminary experiments for 8 2 30" have shown the entrainment is independent of the 
value of C,. 

The assumption that the energy loss along the stagnating streamline is equal to the 
change in potential energy along the streamline cannot be justified rigorously. In  the 
following flow the equality is met precisely, as there is no net acceleration down the 
slope. Therefore we are supposing that the mixing processes in the head are essen- 
tially the same as in the following flow. As, in both cases, the mixing takes place by 
shear instability, this does not seem an unreasonable first approximation. 

Strictly speaking, it is also necessary to take account of the fact that the head is 
expanding as it moves down the slope. However, provided dH/dx < 1, the neglect of 
this effect is small. In  our experiments dH/dx increases with slope and is N 0.35 for a 
vertical plume, so that treating the head as steady may lead to error a t  the largest 
slopes. 

The agreement between the theoretical result (4.4) and the experimental data is very 
satisfactory, provided 8 2 5". For slopes smaller than 5" additional effects must be 
considered. The first of these can be seen by considering (4.1) in the limit 8+ 0. Since 
E M 0,  it  is necessary that 

for a steady flow to exist. In  the absence of mixing, S, = 1 and U3/(gb Q )  N 2 (Simpson 
& Britter 1979) and (4.5) gives a critical angle 6, for a steady flow 8, N 2 c D .  Typically 
C, N 3-0 x 10-3 for a large-Reynolds-number flow, and (4.5) implies that only for 
slopes greater than 0.34" is the buoyancy force down the slope large enough to counter- 
act the bottom friction and produce a steady flow. Our experimental results show 
that the current decelerates when 8 < 0.5", but is steady at larger slopes. We did not, 
however, investigate this transition between steady and time-dependent currents 
very thoroughly. 

For slopes greater than 8, but small enough so that bottom friction is still important, 
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say 0.5" < 0 < 5", the current will be steady. As entrainment is small, (4.1) implies 
that 

The drag coefficient C, is a function of the Reynolds number Re of the flow and so the 
second effect of the bottom friction a t  small slopes is to introduce a dependence on Re. 
Of course, if Re is large enough, Reynolds-number dependence will be small, but in the 
present experiments we are unable to reach high enough values of Re a t  these low 
slopes. Britter & Simpson (1978) estimate that it is necessary for Re to exceed lo3 
before Reynolds number effects become unimportant and we do not achieve these 
values until B 2 5". Consequently, we have omitted the data taken for 8 < 5 O ,  on figure 7. 

5. Discussion 
It has been shown experimentally that the head of a gravity current, produced by a 

continuous source of buoyancy, has a constant velocity when flowing down a slope 
0 2 0.5". On smaller slopes 0 5 0.5" the velocity of the head decreases with distance 
from the source, as the component of the buoyancy force down the slope is insufficient 
to overcome friction at  the lower boundary. 

Probably the most striking result of these experiments is that the head velocity 
4, when non-dimensionalized by the cube root of the buoyancy flux (g;  Q)*, is almost 
constant over the whole range of slopes from 5" < 0 < 90". This lack of variation results 
from the fact that the increased buoyancy force is counteracted by increased entrain- 
ment as 0 increases, leaving the velocity of the head virtually unaffected. We find that 
U,l(g; &)* = 1.5 f 0.2 for 5" < 8 < go", a result which is predicted by some simple 
analysis. 

At large slopes, say 8 2 30°, we find from (4.2) that, in the Boussinesq limit, U, N BUS. 
If we write, as discussed in $4, Us = 1*2U, then this implies that the head travels a t  a 
velocity @6U, where U is the mean velocityof the following flow. On the other hand, if 
the plume is very dense, p 3 pl ,  then, for 0-t go", Uf N Us, and so the front travels at 
about the same velocity as the mean velocity of the following flow. However, dilution 
of the plume will reduce p and the head will decelerate until the velocity approaches 
that of the Boussinesq plume. 

A t  small slopes, the inability to achieve a large Reynolds number in the present 
apparatus has prevented us from obtaining useful experimental data for 0 6 5". On 
the other hand we may consider the implications of our analysis for small slopes, say 
0 -4 5") where E N 0 ,  S ,  1: 1 and, if the Reynolds number is large, 01 = 1 .  Using (4.1) 
and (4.3) it is possible to show that, in this limit, 

This result, which emphasizes the importance of the slope angle at small slopes, is 
consistent with the experiments of Middleton (1966), who found that U,/U = 1 at  very 
small angles and that V , / U  decreased rapidly as 0 increased. We also recover from 
(5.1) the result that the motion is only steady if 8 2 2CD, as otherwise we obtain the 
physically unrealistic result that Uf > U .  
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The motion within the head is somewhat akin to a thermal fed from behind by 
the following flow. The head grows in size as it travels along the slope due to both direct 
entrainment into the head itself and the addition of fluid from the current behind. 
The relative sizes of these can be calculated from the mean density p H ( x )  of the head. 
This quantity also has practical significance as it is related to the mean concentration 
of the constituent producing the density difference. If the cross-sectional area of the 
head is denoted by &nLH and 

9;I = S(PH -PAIP1 

then 
d g h  2 Qgh U - U f  dL H dH -2 
- dx = -&) (T +- d x )  (z) (z) x-2' 

Note that, since U, a U cc (g; Q)b,  dg&/dx has the functional form as (2.4) given by 
dimensional analysis. 

The ratio of the flux of fluid into the head from the following flow to the total flux 
into the head is given by g;I(x)/g'(x), where g'(x) is the buoyancy excess in the follow- 
ing. flow. This ratio is 

This ratio decreases as the slope increases, taking values 0.90, 0.63, 0.44 and 0.35 a t  
0 = lo", 20", 45" and go", respectively. Thus at 10" direct edtrainrnent into the head 
accounts for about one-tenth of the growth of the head, whilst at 90" it provides about 
two-thirds of the total. For the axisymmetric starting plume (8 = go"), Turner (1962) 
found that the two contributions were approximately equal. This smaller amount 
of direct entrainment in the axisymmetric case is also reflected by the fact that 
dH/dx  = 0.18 f 0.03, compared with dHldx = 0.35 for the two-dimensional starting 
plume. 
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FIGURE 2. For legend see overleaf. 
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FIGURE 2. The head of a gravity current on slopes of O", 5", 20°, 45' and 90". The values of gi  
and (gh &) are approximately 100 cm 9-2 and 250 em3 s - ~ ,  respectively, for each run. The heads 
travel from right to left. The scale on the lower boundary is offset every 10 cm. 
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